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Natural convection due to a heat source on a vertical plate
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Abstract

In this work, the flow over a discrete heat source flush mounted on a vertical adiabatic surface is studied. The two-

and three-dimensional formulations were adopted in order to compare with the results presented in the literature. The

flow was assumed incompressible and laminar with constant fluid properties under Boussinesq assumption. The finite

volume control method was used for the discretization of the elliptic governing equations. The numerical results

presented confirm in part the theoretical behavior and show the existence of a transition between the two- and three-

dimensional plume. Additionally, similarity scales for the thermal boundary layer were proposed for the xy and zy
planes. The presence of this region of transition emphasizes the complexity of this kind of flow, where two- or three-

dimensional effects must not be studied separately, mainly on electronic packaging where heat sources are in that

transition region.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection heat transfer is present in many

engineering applications, such as solar collectors, envi-

ronmental engineering and electronic packaging. A large

amount of papers were published dealing with natural

convection in two-dimensional enclosures, channels and

plates, considering the variation of different parameters,

such as Rayleigh number, Prandtl number, aspect ratio,

radiation, conduction, variable properties and discrete

sources. For the cooling of electronic packaging, where

power distribution and location of discrete heat sources

are very important, natural convection is the only heat

transfer mode in case of artificial cooling failure [1–6].

Although two-dimensional models are very useful to

the understanding of the physical phenomenon due to

their simplicity, they are still limited to explain many

complex real situations, where three-dimensional effects

become more important to the fluid transport. Some of

these effects have been included in the works of Fujii [7]
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and Jaluria [1], for an axisymmetric plume flow over

point sources, and in the paper of Kurdyumov and

Li~nn�aan [9], to study the flow over hemispherical sources.

A more realistic modeling is to consider the interaction

between the plume and other surfaces, such as vertical

surfaces, as in the works of Carey and Mollendorf [10]

and Higuera and Weidman [11].

In this work, the flow over a discrete heat source flush

mounted on a vertical adiabatic surface is studied (see

Fig. 1). The two- and three-dimensional formulations

were adopted in order to compare with the results pre-

sented in the literature. In the two-dimensional case, the

heat source was a strip with 0.01 m of height and, on

the three-dimensional one, it was a 0.01 m square. The

adiabatic wall was 1.5 m height and 1.0 m depth, and the

heat source was mounted at the centerline in the wall

and at 0.15 m from the bottom edge.
2. Analysis

2.1. Problem formulation

The flow was assumed incompressible and laminar

with constant fluid properties except for the density
ed.
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Nomenclature

d heat source characteristic length

g gravitational acceleration

Gr�d modified Grashof number, gbd4q00=km2

k thermal conductivity

P dimensionless pressure, ðpþ=qÞðd=aÞ2
Pr Prandtl number, m=a
q00 heat flux

Ra�d modified Rayleigh number, Gr�dPr
T dimensionless temperature, ðTþ � Tþ

1Þ=ðq00d=kÞ
u x dimensionless velocity, uþd=a
v y dimensionless velocity, vþd=a
w z dimensionless velocity, wþd=a
x, y, z spatial coordinates

Greek symbols

a thermal diffusivity

b thermal expansion coefficient

m kinematic viscosity

/ surface temperature excess ratio

/x centerplane-normal temperature excess ratio

/z spanwise-surface temperature excess ratio

q density

Subscripts

0 at the vertical wall

1 ambient value

s maximum at the heat source

Superscript

+ dimensional value

y

x

z

g

Fig. 1. General schematic for the studied concentrated heat

source problem.
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change with temperature in the buoyancy term. The fi-

nite volume control method was used for the discreti-

zation of the elliptic governing equations, the steady

state three-dimensional versions of continuity, momen-

tum and energy equations.
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The equations are made dimensionless using d char-

acteristic length of the heat source, a thermal diffusivity,

q density, and q00 the heat flux prescribed at the source as

reference quantities. Additionally, the following dimen-

sionless parameters have been defined by Carey and

Mollendorf [10].



Fig. 2. Comparison between analytical and numerical results

(2D).
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Surface temperature excess ratio above heat source

/ ¼ T0 � T1
Ts � T1

ð6Þ

Centerplane-normal temperature excess ratio

/x ¼
T ðx; y; 0Þ � T1

T0 � T1
ð7Þ

Spanwise-surface temperature excess ratio

/z ¼
T ðx; 0; zÞ � T1

T0 � T1
ð8Þ

where T0 ¼ T ðx; 0; 0Þ is the temperature at the vertical

wall, T1 the ambient temperature and Ts the maximum

temperature at the heat source.

Modified Grashof number

Gr�d ¼
gbd4q00

km2
ð9Þ

Modified Rayleigh number

Ra�d ¼ Gr�dPr ð10Þ

where g is the gravity acceleration, d the characteristic

length of the heat source, k the thermal conductivity, q00

the heat flux prescribed at the source, b the volumetric

coefficient of thermal expansion and m the kinematic

viscosity.

The computational domain was 1.5 m of height, 1.0

m of depth and 2.0 m of width, in which the left surface

was assumed adiabatic, with no-slip condition, the oth-

ers were assumed to be open boundaries. At the top

boundary a condition of local developed flow was as-

sumed (zero normal gradients). For the other surfaces

zero normal gradients for velocities and ambient tem-

perature were assumed. The boundary conditions were

established to simulate a discrete heat source flush

mounted on an adiabatic vertical wall.

2.2. Numerical procedure

The numerical solution was obtained using the

SIMPLE algorithm, since the flow was assumed in-

compressible. The interpolation of gradients of velocities

and temperatures used the QUICK algorithm.

Unstructured base grid was used in the region of

largest temperature gradients, refined until no significant

variations in the results were observed. Typical 2D and

3D grids used were of 1· 104 and 2· 105 order of

number of cells. The resulting algebraic system was

solved by the point-to-point Gauss–Seidel algorithm,

which is known to have slow convergence, and to ac-

celerate this convergence the algebraic multigrid method

was used. The governing equations were solved in the

dimensional form and then the results were arranged in

the appropriated form. Fluid properties were taken from
Bejan [12]. Validation of the numerical procedure was

checked by solving the 2D and 3D problems presented

by De Vahl Davis [13] and Fusegi et al. [14], respectively.
3. Results

The two-dimensional case is often used to model the

flow due to a line heat source, as in Milanez and Bergles

[3]. This case was solved using properly the boundary

conditions mentioned above. The decaying laws for the

temperature far downstream of a heat source date back

to the pioneering work of Zeldovich [15]. Jaluria and

Gebhart [8] used similarity solution to show that the

wall temperature decays with yn, where n ¼ �3=5 and y
is the dimensionless vertical distance above the heat

source. In Fig. 2 the dimensionless temperature decay as

a function of the dimensionless vertical distance above

the heat source can be noticed. A good agreement was

found between the results presented here and the scaling

law derived from the similarity approach. The fitted

curve was calculated using the points where y > 3.

The three-dimensional case was experimentally

studied by Carey and Mollendorf [10]. They presented

detailed measurements of the temperature above a dis-

crete heat source on a plexiglass wall and concluded that

the surface temperature decays proportional to ðyÞ�0:77
,

where d is the source characteristic length. This result

was questioned by Higuera and Weidman [11] who

carried out a scale analysis before solving the governing

equations. They found that the surface temperature far

downstream of the heat source decays proportional to

y�1, as a point source plume. Fig. 3 shows a good

agreement of the numerical results with that reported in

[11].

Higuera and Weidman argued that the measurements

carried out by Carey and Mollendorf were taken only at



Fig. 3. Comparison between analytical and numerical results

(3D).

Fig. 4. Centerplane temperature with surface-normal coordi-

nate.

Fig. 5. Spanwise-surface temperature with spanwise coordi-

nate.
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moderate distances downstream of the source, where

apparently, according to them, the flow was intermedi-

ate between a two- and three-dimensional plume, as can

be seen in Fig. 3. Additionally, this transition from two-

to three-dimensional plume should be dependent of the

source dimension, because there would be no transition

at all if the source were infinitesimal. Carey and Mol-

lendorf used two different source sizes, a 1.27 cm square

and other circular with diameter of 0.47 cm. Neverthe-

less, the results they presented do not allow any con-

clusion about the dependence of the transition with the

source size, although, in fact, it can be seen that from

y ’ 8, for the smaller source, and from y ’ 10, for the

other one, the experimental results approach the theo-

retical predictions.

To study the behavior of the thermal boundary layer,

the temperature profile downstream the heat source in

the planes normal (xy) and tangent (zy) to the wall is

analyzed. Two dimensionless parameters that represent

the temperature difference between the wall and the

ambient temperature were defined as in [10], see Eqs. (7)

and (8).

Carey and Mollendorf measured the temperature in

these planes along the coordinate y in two points along

(xy) and (zy), namely y ¼ 7:0 and 10.2 cm, correspond-

ing to y ¼ 5:5 and 8.0. A different similarity scale was

determined for the temperature profiles in the two planes

considered (x=y in plane xy and z=y1=5 in plane zy),
stressing the three-dimensional structure of the flow.

Figs. 4 and 5 present the dimensionless temperature

profiles taken at several positions in planes xy and zy,
including the region studied in Ref. [10], y < 10. It can

be noticed that the thermal boundary layer thickness in

plane zy is about 25% higher than that of plane xy, even
for points sufficiently far from the heat source, that is, in

the three-dimensional region fully developed. In order to
determine the similarity scale for each plane studied,

curves of x and z as functions of y, parametrized by /x

and /z, were plotted in log–log graphs to obtain coeffi-

cients mx and mz for relations x=ymx ¼ C and z=ymz ¼ C,
where C is an arbitrary constant. Figs. 6 and 7 exhibit

average curves and the respective coefficients numeri-

cally obtained and they are different from those obtained

by Carey and Mollendorf.

For the xy plane the value of the coefficient numeri-

cally obtained was 0.49± 0.01, which is different from

the experimental value of 1.0. According to the study of

Higuera and Weidman [11], the theoretical value of the

similarity scale for x and z are identical and equal to 0.5,

therefore the numerical result seems to represent the

theoretical value better than the experimental. This

discrepancy between the experimental and the theoreti-

cal value is probably due to the region where the mea-

surements were taken. As mentioned previously, the

flow can be considered fully developed only after y ’ 10.

For the zy plane, the curve exhibits an evident change

of behavior at y ¼ 10, stressing that is in this region that



Fig. 7. Normalization factor for the spanwise-surface temper-

ature variation.

Fig. 9. Centerplane temperature with normalized surface-nor-

mal coordinate.

Fig. 8. Centerplane temperature with normalized surface-nor-

mal coordinate.

Fig. 6. Normalization factor for the centerplane temperature

variation.

Fig. 10. Spanwise-surface temperature with normalized span-

wise coordinate.
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the flow transition is taking place. For y < 10, the co-

efficient obtained numerically (0.20± 0.02) coincides

with the experimental value (1/5). However, for y > 10,

the numerical value is 0.42 ± 0.01, exhibiting a more

pronounced decay closer to the theoretical value of 0.5.

This theoretical value can be questioned, because the

model assumes identical behaviors for planes xy and zy,
that is, the same behavior expected for an axisymmetric

plume, therefore ignoring the presence of the drag force

at the wall.

Figs. 8 and 9 show the numerical results normalized

by the coefficient obtained numerically (Fig. 8) and ex-

perimentally (Fig. 9) [10]. It may be observed that the

numerical coefficient is a better representation for a

similarity scale.

Figs. 10 and 11 depict the numerical data respective

to plane zy, normalized by the coefficient obtained nu-

merically (Fig. 10) and experimentally (Fig. 11) [10]. It

can be noticed that the numerical coefficient is a better

representation for a similarity scale, while the experi-

mental fits well only for the region y < 10.



Fig. 11. Spanwise-surface temperature with normalized span-

wise coordinate.
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4. Conclusions

The numerical results presented confirm in part the

theoretical behavior established in [11] and show the

existence of a transition between the two- and three-

dimensional plume. Additionally, similarity scales for the

thermal boundary layer were proposed for the xy and zy
planes. The influence of the source size on the transition

region deserves more attention. The presence of this re-

gion of transition emphasizes the complexity of this kind

of flow, where two- or three-dimensional effects must not

be studied separately, mainly on electronic packaging

where heat sources are in that transition region.
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